Строительный сайт

Обоснование выбора системы отопления. Выбор и обоснование принципиальной схемы системы кондиционирования Обоснование выбора охладителя

Выбор системы охлаждения для РЭА заданного типа. Способ охлаждения во многом определяет конструкцию РЭА, поэтому даже на ранней стадии проектирования, т. Е. На стадии технического предложения или эскизного проекта, необходимо выбрать систему охлаждения РЭА. Неудачное решение этой задачи может обнаружиться только на более поздних этапах конструирования (детальная проработка конструкции, испытание опытного образца и т. П.), что может свести на нет работу большого коллектива, а сроки создания РЭА значительно увеличатся.

На первых этапах проектирования в распоряжении конструктора имеется техническое задание (ТЗ), в котором обычно содержится следующая весьма ограниченная информация:

Суммарная мощность Ф тепловыделения в блоке;

Диапазон возможного изменения температуры окружающей среды

Пределы изменения давления окружающей среды -

Время непрерывной работы прибора -

Допустимые температуры элементов-

Коэффициент заполнения аппарата

(12.1)

Где Vi - объем i-гo элемента РЭА; п - число элементов; V- объем, занимаемый РЭА. Требуется также задать горизонтальные (Li, L2) и вертикальные (L3) размеры корпуса РЭА. Эти исходные данные недостаточны для детального анализа теплового режима РЭА, но их можно использовать для предварительной оценки и выбора системы охлаждения. Последний носит вероятностный характер, т. Е, дает возможность оценить вероятность обеспечения, заданного по ТЗ теплового режима РЭА при выбранном способе охлаждения. По результатам обработки статистических данных для реальных конструкций, детальных тепловых расчетов и данных испытания макетов были построены графики (рис. 12.1), характеризующие области целесообразного применения различных способов охлаждения. Эти графики построены для непрерывной работы РЭА и связывают два основных показателя: . Первый показатель перегрев относительно окружающей среды tc корпуса наименее теплостойкого элемента, для которого допустимая и приведенная в ТЗ температура имеет минимальное значение.

Заметим, что для свободного охлаждения т. Е. Соответствует максимальной температуре окружающей среды по ТЗ; для принудительного охлаждения т. Е. Соответствует температуре воздуха (жидкости) на входе в РЭА. Второй показатель q равен плотности теплового потока, проходящего через условную площадь поверхности теплообмена:

(12.2)


Рисунок 12.1 Области целесообразного применения различных способов охлаждения

Где Ф - суммарная мощность, рассеиваемая с этой поверхности; коэффициент, учитывающий давление воздуха (при атмосферном давлении коэффициент заполнения, определяемый по формуле (12.1).

На рис. 12.1 представлены два типа областей: в одном можно рекомендовать применение какого-либо одного способа охлаждения (не заштрихованы: 1 - свободное воздушное, 3 - принудительное воздушное, 5-принудительное испарительное); в другом возможно применение двух или трех способов охлаждения (заштрихованы: 2 - свободное и принудительное воздушное, 4 - принудительное воздушное и жидкостное, 6 - принудительное жидкостное и свободное испарительное, 7- принудительное жидкостное, принудительное и свободное испарительное, 8 -свободное принудительное и свободное испарительное, 9-свободное и принудительное испарительное) .

Верхние кривые рис. 2.1 обычно применяют для выбора охлаждения больших элементов - крупногабаритных ламп, магнитов, дросселей и т. П. Нижние кривые используют для выбора системы охлаждения блоков, стоек и т. П., выполняемых на дискретных микроминиатюрных элементах.

Если показатели РЭА попадают в заштрихованную область (возможно применение двух и трех способов охлаждения), то задача выбора способа охлаждения осложняется и требуются более детальные расчеты.

Приведем дополнительные данные, позволяющие учесть давление воздуха; в формуле (12.2) последнее учитывается коэффициентом kp, который был найден на основании расчетов и экспериментов. С уменьшением давления воздуха температура элементов РЭА возрастает; обозначим давление воздуха снаружи блока р1 а внутри - р2 для герметичного блока значение kp приведено в приложении (см. Табл. А.11). Коэффициент kp учитывает ухудшение охлаждения РЭА при пониженном давлении только в условиях свободной конвекции воздуха.

Заметим, что выбор системы охлаждения не сводится только к определению области охлаждения, необходимо также учитывать техническую возможность осуществления данного способа охлаждения РЭА, т. Е. Массу, объем, потребляемую мощность. Как показывает опыт, при рациональном проектировании можно обеспечить заданный тепловой режим бортовых РЭА при удельном расходе воздуха не выше 180-250 кг/(ч*квт).

Для стационарных РЭА, где менее жесткие ограничения по габаритам, массе, энергопотреблению расход воздуха может быть увеличен до 250-350 кг/(ч-квт). Для РЭА, охлаждаемых с помощью воздуха, тепловой режим изучен наиболее полно. В этих случаях можно не только рекомендовать ту или иную систему воздушного охлаждения, но и оценить вероятность, с которой выбранная система охлаждения позволит обеспечить заданный тепловой режим.


Теплообменники РЭС.

Теплообменным аппаратом называется устройство, в котором осуществляется процесс передачи теплоты от одного теплоносителя к другому. Такие аппараты многочисленны и по своему технологическому назначению и конструктивному оформлению весьма разнообразны. По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.

Рекуперативными называются такие аппараты, в которых теплота от горячего теплоносителя к холодному передается через разделяющую их стенку. Примером таких аппаратов являются парогенераторы, подогреватели, конденсаторы и т. п.

Регенеративными называются такие аппараты, в которых одна и та же поверхность нагрева омывается то горячим, то холодным теплоносителем. При протекании горячей жидкости теплота воспринимается стенками аппарата и в них аккумулируется, при протекании холодной жидкости эта аккумулированная теплота ею воспринимается. Примером таких аппаратов являются регенераторы мартеновских и стеклоплавильных печей, воздухоподогреватели доменных печей и др.

В рекуперативных и регенеративных аппаратах процесс передачи теплоты неизбежно связан с поверхностью твердого тела. Поэтому такие аппараты называются также поверхностными.

В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.Специальные названия теплообменных аппаратов обычно определяются их назначением, например, парогенераторы, печи, водоподогреватели, испарители, перегреватели, конденсаторы, деаэраторы и т. д. Однако несмотря на большое разнообразие теплообменных аппаратов по виду, устройству, принципу действия и рабочим телам, назначение их в конце концов одно и то же, это - передача теплоты от одной, горячей, жидкости к другой, холодной. Поэтому и основные положения теплового расчета для них остаются общими.

Теплообменники отличаются характеристиками распределения температур по длине канала:

где T 1 ’ и T 2 ’ – температуры на входе теплообменника; T 1 "" и T 2 "" – на выходе.

Все теплообменники классифицируются на две группы, исходя из условий теплообмена. Передача тепла от горячего теплоносителя к холодному может идти либо через твердую стенку, либо через фазовую границу раздела. Через твердую стенку – рекуперативный теплообменник, через фазовую границу – градирня.

В справочниках ОСТ приведены характеристики теплообменников, выпускаемых промышленностью для РЭС.

Основная характеристика теплообменников – удельная площадь теплообменной поверхности:

; S уд ≈ 4500 и более.

Особенности работы теплообменных аппаратов:

1. Режим движения теплоносителя. В теплоносителе должен быть реализован турбулентный режим. Газ – V ≈ 100 ÷ 150 м/c; жидкость – V ≈ 2,5 ÷ 3 м/c. Режимы, которые реализуются в теплообменнике, должны быть выбраны оптимальным образом.

2. Тепловое проектирование теплообменников сводится к выполнению конструкторского и проверочного расчетов.

а) При выполнении конструкторского расчета осуществля­ется проектирование аппарата, цель расчета состоит в определении рабочей площади поверхности теплообменника, если заданы массовые расходы горячего и холодного теплоносителя, их температуры на входе и выходе, а также их удельные теплоемкости.

б) Проверочный расчет осуществляют для теплообменника с известной площадью поверхности (например, для сконструированного теплообменника). Цель расчета - определить значения температур теплоносителя на выходе из теплообменника и потока Ф теплоты, передаваемого от горячего теплоносителя к холодному, то есть установить рабочий режим аппарата.

Обоснование выбора системы технического водоснабжения ЛАЭС-2 Круглый стол «Экологические аспекты применения градирен в системах охлаждения АЭС» г.Сосновый Бор г.




Основные вопросы Сравнительный анализ эксплуатации блоков с «сухими и влажными градирнями» не сделан до сих пор. Нельзя не учитывать, что паровой факел захватит и разнесет по ближайшим окрестностям радиационные аэрозоли из вентиляционных труб действующей ЛАЭС. Специалисты-медики уже прогнозируют рост числа заболеваний вызванных этим соседством. На сегодняшний день не проведено исследований о возможных последствиях на здоровье людей и природу всей гаммы растворенных в воде Финского залива химических веществ и биологических компонентов, которые будут выбрасываться «мокрыми» градирнями.


Основные вопросы Паровое облако над «Сосновоборским вулканом» будет накрывать город и ближайшие поселения Ленинградской области. Значительно убавиться количество солнечных дней в нашем и без того пасмурном крае. В зимний период наш город и окрестности обледенеют от непрерывно выпадающей влаги. Особый разговор – о 500-метровой зоне вокруг градирен. В наибольшей степени пострадает эксплуатационный персонал действующей ЛАЭС, сотрудники НИТИ, рабочие и служащие предприятий, расположенных в промзоне.


Основные факторы для выбора системы охлаждения исходные технические требования по мощности энергоблока, референтность, надежность в эксплуатации; местные климатические и гидрологические условия, в т.ч. доступность источника водоснабжения; ограничения по занимаемой площади; требования нормативной документации в области охраны окружающей среды; стоимостные факторы, в т.ч. эксплуатационные расходы.




Водный кодекс РФ от N 74-ФЗ (вступил в силу с) Глава 6. ОХРАНА ВОДНЫХ ОБЪЕКТОВ Статья 60. Охрана водных объектов при проектировании, строительстве, реконструкции, вводе в эксплуатацию, эксплуатации водохозяйственной системы П.4 Проектирование прямоточных систем технического водоснабжения не допускается.


Оборотная система техводоснабжения Преимущества: позволяет резко снизить потребность АЭС в свежей воде и значительно уменьшить сброс тепла в водоисточник Недостатки: по составу сооружений система более сложная, чем прямоточная, дороже в строительстве и эксплуатации




Выполненные работы по сравнению испарительных и «сухих» градирен «Cравнительный анализ эксплуатации блоков с «сухими» и «влажными» градирнями» (ОАО «СПбАЭП», 2005 г.) «Технико – экономические исследования по сравнению «мокрых» и «сухих» градирен применительно к условиям площадки НВАЭС-2» (ОАО «Атомэнергопроект», 2009г.)


Преимущества башенных испарительных градирен достижения требуемых технико- экономических показателей проекта ЛАЭС-2, за счет обеспечения мощности энергоблока 1198 МВт, минимизации затрат на охлаждение, референтность принимаемых решений, положительный опыт эксплуатации на действующих АЭС в России и за рубежом, что позволяет обеспечить требуемый срок реализации проекта (ввод в эксплуатацию в 2013 г.); соответствие требованиям нормативной документации в области охраны окружающей среды




Сухие градирни капитальные затраты на сухие градирни в 3-5 раз превышают затраты на испарительные градирни, существенная недовыработка мощности АЭС, работающей на «сухих» градирнях, которая обусловлена более высокой температурой охлажденной воды отсутствие опыт эксплуатации «сухих» градирен большой мощности в зимних климатических условиях площадки ЛАЭС-2, что снижает надежность работы АЭС управление теплосъемом башенной сухой градирни ведется за счет открытия/закрытия многочисленных жалюзи и включения/выключения теплообменных секций при помощи задвижек с электрическим приводом по сигналам многочисленных датчиков. Надежность работы системы, особенно в сложных погодных условиях, значительно снижена. тепловое воздействие на окружающую среду.




Оценка воздействия градирен на распространение вентиляционных выбросов АЭС Влияние факела градирен на диффузию примеси газоаэрозольного выброса в вентиляционную трубу ЛАЭС-2 приводит к более интенсивному рассеянию радиоактивной примеси при ее распространении вблизи факела. В расчетах вероятных концентраций радионуклидов в приземном воздухе использована 10-летняя статистика метеонаблюдений. Значения факторов разбавления и осаждения исследованы в радиусе до 10 км от источника выброса (включая город Сосновый Бор) в направлении 16 румбов.


Оценка воздействия градирен на распространение вентиляционных выбросов АЭС По консервативным оценкам учет распространения факела градирни при постоянном направлении ветра, совпадающим с направлением от градирни к венттрубе ЛАЭС-2, приводит к увеличению разовых приземных концентраций не более, чем в 2 раза для категорий устойчивости погоды А–D, формирующих загрязнение воздуха на расстояниях до 3 км от АЭС. На расстояниях более 10 км максимальное увеличение концентраций не превысит 40%. Для рассмотренных условий исследованы максимально- возможные индивидуальные дозы облучения критической группы населения, обусловленные номинальными газоаэрозольными выбросами ЛАЭС-2. При вводе в эксплуатацию четырех блоков дозовые нагрузки на критическую группу населения с учетом влияния факелов градирен не превысят уровня безусловно приемлемого риска (менее 10 мкЗв/год) согласно НРБ-99/2009


Оценка воздействия градирен на распространение вентиляционных выбросов действующей ЛАЭС Выбросы инертных газов и 131-йода с 4-х блоков ЛАЭС-2, формирующих в основном дозовую нагрузку на население, не превысят 40% от соответствующего выброса, а, следовательно, и дозовых нагрузок на население, от действующей ЛАЭС. В соответствии с данными Радиевого института им. В.Г.Хлопина [доклад на Международном экологическом форуме «Окружающая среда и здоровье человека», 2008, СПб; доклад на совещании в ОАО «Атомэнергопроект», Москва, 2010] реалистическая оценка эффективных доз для населения от выбросов действующей ЛАЭС в г. не превышала 0,5 мкЗв/год.


Оценка воздействия градирен на распространение вентиляционных выбросов действующей ЛАЭС С учетом отмеченного выше возможного увеличения разовых приземных концентраций в воздухе до 2-х раз дозовые нагрузки от газоаэрозольных выбросов ЛАЭС, попадающих в зону распространения факела градирен ЛАЭС-2, в ближней зоне (до 3-км от источника) не превысят 1 мкЗв/год. При вводе в эксплуатацию четырех блоков ВВЭР дозовые нагрузки на критическую группу населения с учетом влияния факелов градирен не превысят уровня безусловно приемлемого риска (менее 10 мкЗв/год) согласно НРБ-99/2009


Специфические загрязнители в охлаждающей воде градирен Содержание специфических компонентов в воде систем технического водоснабжения (МУ, Роспотребнадзор) должно обеспечивать соблюдение ПДК в воздухе рабочей зоны (ГН). Выполнена предварительная оценка соответствия качества воды (соли токсичных металлов 1-2 кл. опасности) градирен среднесуточным ПДКсс для населения, которые на 1-2 порядка величины более жестки по сравнению с ПДК в воздухе рабочей зоны. Оценка выполнена в соответствии с 1.Руководством МАГАТЭ Рассеяние радиоактивных материалов в воздухе и воде и учет распределения населения при оценке площадки для атомных электростанций. NS-G Требованиями международных стандартов безопасности «Generic Models for Use in Assessing the Impact of discharges of Radioactive Substances to the Environment»(SRS No.19, IAEA, Vienna, 2001)


Специфические загрязнители в охлаждающей воде градирен ЭлементОтносительная к ПДКсс концентрация ТМ в воздухе устья градирни Cu1, Pb1, Ni6, Cd5, Co9, Mn3,210 -3


Специфические загрязнители в охлаждающей воде градирен В воздухе устья градирен (без учета разбавления атмосферным воздухом) относительные к ПДКсс концентрации токсичных металлов не превышают 6, (никель, содержащийся в исходной морской воде). С учетом рассеивающих свойств атмосферы при максимальном факторе рассеивания, принятом равным 10- 4, концентрации токсичных металлов в воздухе ближней зоны ЛАЭС-2 прогнозируются в тысячи раз меньше ПДКсс, что не приведет к сколь-нибудь значимым последствиям для населения и компонентов экосистем.




Ингибиторы и биоциды в воде градирен Для предотвращения коррозии и биологического обрастания в градирнях используются следующие реагенты: Коллоидный углерод Концентрация в воздухе на выходе из градирни = 8, мг/м3 (*) при ПДКс.с. = 5, мг/м3 (по углероду). Гипохлорит натрия Концентрация в воздухе на выходе из градирни = 1, мг/м 3 (*) при ПДКс.с. = 3, мг/м 3 (по хлору). (*) Расчетные концентрации полученные по консервативной методике (SRS No.19, IAEA, Vienna, 2001)


Проведенные государственные экологические экспертизы по ЛАЭС-2 1.Государственная экологическая кспертиза материалов обоснования лицензии Ростехнадзора на размещение блоков 1 и 2 ЛАЭС-2 2.Государственная экологическая экспертиза материалов обоснования лицензии Ростехнадзора на сооружение блоков 1 и 2 ЛАЭС-2 3.Главгосэкспертиза 4.Государственная экологическая экспертиза материалов обоснования лицензии Ростехнадзора на размещение блоков 3 и 4 ЛАЭС-2


Результаты проведенных экологических экспертиз по первой очереди ЛАЭС-2 «Экспертная комиссия государственной экологической экспертизы отмечает, что представленные материалы обоснования лицензии на размещение и сооружение энергоблоков 1 и 2 ЛАЭС-2 по составу и содержанию соответствуют требованиям законодательных актов и нормативных документов Российской Федерации в области охраны окружающей среды. Представленная документация содержит материалы по воздействию энергоблоков 1 и 2 на окружающую среду, в которых отражены природоохранные мероприятия и обоснована экологическая безопасность намечаемой деятельности.»




Обобщенные материалы в составе проекта 2-ой очереди ЛАЭС-2 Многофакторная оценка экологического риска для населения от загрязнений окружающей среды при одновременной (нормальной) эксплуатации ЛАЭС-2 и ЛАЭС в соответствии с Руководством Роспотребнадзора Р, НРБ-99/2009, руководствами МАГАТЭ, Рекомендациями МКРЗ и др.. Оценка последствий для населения, степень загрязнения земель, воздуха, воды, продуктов питания от аварий на энергоблоке в соответствии с рекомендациями МАГАТЭ (Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 3): Off-Site Consequences and Estimation of Risks to the Public: A Safety Practice. IAEA Safety Series No. 50-P- 12).


Модернизация проекта градирен ЛАЭС-2 в ходе строительства Первоначальное решение энерго- блока Кол-во гради- рен на блок Расход циркуляционной воды, м3/час Потери воды на испарение, % / м3/сут Потери воды с капельным уносом, % / м3/сут Суммарные потери для четырех энергоблоков, м3/сут Блок,1 / ,002 / 3,6 Блок,1 / ,002 / 3,4 Блок,1 / ,002 / 3,4 Блок,1 / ,002 / 3,4 Оптимизированное решение энерго- блока Кол-во гради- рен на блок Расход циркуляционной воды, м3/час Потери воды на испарение, % / м3/сут Потери воды с капельным уносом, % / м3/сут Суммарные потери для четырех энергоблоков, м3/сут Блок,1 / ,001 / 1,8 Блок,1 / ,001 / 1,7 Блок,1 / ,001 / 1,7 Блок,1 / ,001 / 1,7


Модернизация проекта градирен ЛАЭС-2 в ходе строительства В ходе разработки рабочей документации градирен ЛАЭС-2 было достигнуто сокращение потерь воды в количестве м3/сутки. При этом величину потерь с капельным уносом удалось сократить в два раза. Такие результаты достигнуты за счет применения высокоэффективных водоуловителей и обоснования сокращения расхода циркуляционной воды.

Данная методика является лишь началом гармонизации общей методики, изложенной во всех частях EN 15316, по определению суммарного энергопотребления конечными потребителями (система отопления и горячего водоснабжения), внешними сетями и источниками генерирования энергии (котельной установкой, биоустановкой, солнечными коллекторами, тепловым насосом, когенерационной установкой и др.). Приведенная европейская норма включена в перечень усовершенствований украинской нормативно-правовой базы по энергоэффективности в строительной отрасли «Отраслевой программы повышения энергоэффективности в строительстве на 2010-2014 гг.».

Обращаем внимание, что данная методика является количественным выражением влияющих факторов энергоэффективности систем отопления, изложенных в ДСТУ Б А.2.28:2010, раздел «Энергоэффективность», в составе проектной документации объектов. Однако данная методика пока не является полной. Она не охватывает дополнительных затрат энергии системы отопления — насосом в различных системах отопления, автоматикой и приводами клапанов — изложенных в EN 1531623:2007 «Heating systems in buildings. Method for calculation of system energy requirements and system efficiencies. Part 23: Space heating distribution systems».

Уравнение (1) методики детализируют влияющие факторы различных систем отопления (водяная, электрическая, воздушная, инфракрасная) во всем многообразии их современного технического оснащения. Но пока оно не охватывает новейшего энергоэффективного оборудования для систем отопления, такого как комбинированные клапаны для двухтрубных систем (Danfoss ABQM), термобалансировочные клапаны для однотрубных систем (Danfoss ABQT), которые превзошли на сегодняшний день показатели энергоэффективности технических решений, включенных в уравнение (1).

К сожалению, методика, тем более межгосударственная, разрабатываемая и утверждаемая годами, не поспевает за научно-техническим прогрессом. Также методика охватывает большинство применяемых сегодня технических решений при отоплении зданий и является существенным развитием действующих на Украине нормативных методик, изложенных в п. 6 приложения 12 изм. №1:1996 к СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование», а также в п. 5.2 ДСТУН Б А.2.25:2007 «Руководство по разработке и составлению энергетического паспорта зданий».

В методике приведены ссылки на прДСТУН Б В.1.1ХХХ:201Х «Строительная климатология». Данный стандарт выйдет в 2011 г. Также в методике есть ссылки на норматив EN 14336:2004 «Heating systems in buildings. Installation and commissioning of water based heating systems», который необходимо использовать при обязательной наладке систем отопления. Требования этой европейской нормы относительно испытания трубопроводов под давлением уже изложены в ДСТУ Б В.2.544:2010 «Проектирование систем отопления зданий с тепловыми насосами», который модифицирован к EN 15450:2007. С методами гидравлической наладки систем отопления можно ознакомиться в книге В.В. Пыркова «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2010 г., а также в обучающих фильмах, выложенных на сайте компании Danfoss (www.danfoss.com)*.

Требования к EN 14336:2004 запорно-регулирующей арматуре для наладки состоят в следующем:

❏ перед проектированием системы отопления, проектировщик обязан определиться с методом и приборами для наладки системы и применить запорно-регулирующую (в данном контексте — балансировочную) арматуру, позволяющую реализовать выбранный метод;

❏ комплектация и монтаж системы должны полностью отвечать проекту.

В конце методики приведен пример сопоставления энергопотребления системой электрического и водяного отопления. Пример является реализацией требований п. 5.24 изм. №1:2009 к ДБН В.2.215-2005 «Жилые здания», в соответствии с которыми применение систем электроотопления, за исключением систем электроотопления от возобновляемых источников энергии, требует технического и экономического обоснования. В примере есть ссылки на новую редакцию прДБН В.2.524:201Х «Электрические кабельные системы отопления», с которой вы ознакомитесь в 2011 г.

Обращаем внимание, что в соответствии с требованиями п. 5.24 и 5.25 изм. №1:2009 к ДБН В.2.215-2005 применение местной котельной и квартирных газовых генераторов также требует технического и экономического обоснования. Эти требования адаптированы к положению ст. 6 Директивы 2010/31/ЕС «Energy Performance of Buildings», а также проекта закона Украины «Об энергетической эффективности зданий», в соответствии с которыми местные котельные и квартирные газовые генераторы не входят в перечень альтернативных источников энергии при теплообеспечении зданий. Для осуществления технического и экономического обоснования указанных технических решений необходимо гармонизировать наши нормы к соответствующим частям EN 15316.

Методика

1. Техническое и экономическое обоснование выбора системы отопления здания осуществляют путем сравнения вариантов проектных решений по энергопотреблению.

2. Комплексное определение энергоэффективности проектного решения с учетом энергоэффективности источника энергии, внешних энергопередающих сетей и систем теплопотребления здания рекомендуется осуществлять по методике в EN 15316 (все части).

3. Упрощенное сравнение вариантов проектных решений — лишь по энергоэффективности распределения тепловой энергии системой отопления в здании без учета дополнительных энергозатрат на работу электрооборудования водяной системы отопления (насоса, электроники, электроприводов и др.) — рекомендуется осуществлять по методике в EN 1531621 .

3.1. Варианты проектных решений сравнивают по расчетному расходу тепловой энергии за отопительный период, определяемому по сумме ежемесячных расчетных расходов.

3.2. Для здания с различными внутренними температурными условиями или с конструктивно отличающимися системами отопления сравнение осуществляют соответственно по каждой температурной зоне здания или по зоне действия системы. Здание разделяют на температурные зоны при разности температуры воздуха в отапливаемых помещениях более чем на 3 °C (кроме квартир).

3.3. Расчетный расход тепловой энергии системой отопления здания Qem, ls, год за отопительный период в зависимости от степени детализации влияющих факторов энергоэффективности системы — применяемого оборудования, схемного решения, средств регулирования, характеристик отапливаемого помещения — определяют по уравнению (1):

Здесь fhudr — коэффициент, учитывающий выполнение гидравлической балансировки системы; fim — коэффициент, учитывающий применение периодического теплового режима помещения; frad — коэффициент, учитывающий влияние лучистого теплообмена; ηem — обобщающий коэффициент, учитывающий условия теплоотдачи системы:

где ηstr — коэффициент, учитывающий влияние градиента (стратификации) температуры воздуха в помещении, для некоторых систем — среднее арифметическое коэффициентов ηstr1 (учитывает температуру теплоносителя) и ηstr2 (учитывает условия установки отопительного прибора); ηctr — коэффициент, учитывающий применяемый вид регулирования температуры воздуха в помещении; ηemb — коэффициент, учитывающий теплопоступления в отапливаемое помещение от встроенных нагревательных элементов (для панельно-лучистых систем), для некоторых систем является среднеарифметическим коэффициентов ηemb1 (учитывает тип панельно-лучистой системы) и ηemb2 (учитывает теплоизоляцию панельно-лучистой системы к смежным помещениям).

Дальнейшие переменные в формуле (1): n — количество полных и неполных iх месяцев отопительного периода; Qk — общие теплопотери здания через его тепловую оболочку в iм месяце отопительного периода, кВт⋅ч (определяют в соответствии с 5.3 ДСТУН БА.2.25 , рассчитывая количество градусосуток для полных и неполных месяцев отопительного периода в соответствии с 5.5 прДСТУН Б В.1.1ХХХ:201Х ); Qвн — внутренние теплопоступления в iм месяце отопительного периода, кВт⋅год (определяют в соответствии с 5.8 ДСТУН Б А.2.25, принимая при этом количество градусо-суток полного месяца и неполного месяца в соответствии с табл. 3 прДСТУН Б В.1.1ХХХ:201Х; теплопоступления в других типах зданий определяют по справочным данным для соответствующего оборудования, технологического процесса и др.); Qs — теплопоступления через окна и другие свето-прозрачные ограждающие конструкции здания от суммарной (прямой и рассеянной) солнечной радиации при средних условияхоблачности в iм месяце отопительного периода, кВт⋅ч (определяют в соответствии с 5.9 ДСТУН Б А.2.25, принимая интенсивность солнечной радиации за полный месяц и определяя путем интерполирования за неполный месяц отопительного периода в соответствии с табл. 8 прДСТУН Б В.1.1ХХХ:201Х; количество суток неполного месяца определяют в соответствии с табл. 3 прДСТУН Б В.1.1ХХХ:201Х); v — коэффициент утилизации теплопритоков (учитывает способность здания воспринимать теплопритоки), для зданий без автоматического регулирования температуры воздуха в помещениях v = 0, для зданий с автоматическим обеспечением регулирования температуры воздуха в помещениях определяют в соответствии с рис. 1 по критерию тепловой инерции D, который определяют по уравнению (4) в ДБН В.2.631 .

4.3.1. Влияющие факторы энергоэффективности водяной системы отопления с отопительными приборами (радиатор, конвектор и др.) в помещениях высотой не более 4 м представлены в табл. 1 и 2. Коэффициент, учитывающий применение периодического теплового режима помещений, принимают fim = 0,97. Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 1,0. Коэффициент, учитывающий гидравлическую наладку системы fhudr, принимают в соответствии с табл. 2.

4.3.2 . Влияющие факторы энергоэффективности панельно-лучистой водяной или электрической системы отопления с интегрированными в строительные конструкции нагревательными панелями в помещениях высотой не более 4 м представлены в табл. 3 и 4.

Коэффициент, учитывающий применение периодического теплового режима помещений, принимают fim = 0,98. Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 1,0. Коэффициент, учитывающий гидравлическую наладку системы fhudr, принимают в соответствии с табл. 4.

4.3.3. Влияющие факторы энергоэффективности электрической системы отопления в помещениях высотой не более 4 м представлены в табл. 5. Коэффициент, учитывающий применение периодического теплового режима помещений, принимают fim = 0,97 (применяют в системах с интегрированной обратной связью). Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 1,0.

4.3.4. Влияющие факторы энергоэффективности воздушного отопления нежилых зданий с помещениями высотой не более 4 м представлены в табл. 6.

4.3.5. Влияющие факторы энергоэффективности систем в помещениях высотой от 4 до 10 м (здания со значительным внутренним пространством) представлены в табл. 7. Параметры системы воздушного отопления:

❏ для промежуточной высоты помещения определяют как арифметическое среднее для систем с вертикальными или горизонтальными струями;

❏ для панельно-лучистой системы водяного отопления при высоте размещения не более 4 м принимают параметр ηem для высоты помещения 4 м; при этом ηrad = 1.

Величину коэффициента, учитывающего влияние лучистого теплообмена, принимают frad = 0,85. Данный коэффициент является усредненным для разных систем в помещениях со значительным внутренним пространством.

4.3.6. Влияющие факторы энергоэффективности систем в помещениях высотой более 10 м (здания со значительным внутренним пространством) представлены в табл. 7. Параметры системы воздушного отопления (ВО) при промежуточной высоте помещения определяют как арифметическое среднее для систем с горизонтальными или вертикальными струями.

Коэффициент, учитывающий влияние лучистого теплообмена, принимают frad = 0,85. Данный коэффициент является усредненным для разных систем в помещениях со значительным внутренним пространством.

4.4. Пример

4.4.1. Условие: в здании с помещениями высотой до 4 м сравнить электрическую кабельную систему отопления прямого действия (ЕКС ОПД) с радиаторной системой центрального водяного отопления.

4.4.2. Исходные данные: теплопотери здания за отопительный период, определенные как сумма ежемесячных теплопотерь, составляет 150 кВт⋅ч/год. Помещения с автоматическим регулированием температуры воздуха. Значения параметров ЕКС ОПД в соответствии с 4.3.2.:

❏ двухпозиционное регулирование (величина ηctr = 0,91);

❏ помещения с сухими полами (величнина ηstr = 1, ηemb1 = 0,96);

❏ нагревающие панели с минимальной теплоизоляцией в соответствии с 5.2.2 прДБН В.2.524 ηemb2 = 0,95;

❏ применение периодического теплового режима помещений fim = 0,98, влияние лучистого теплообмена frad = 1,0; \

❏ гидравлическая наладка системы fhudr не учитывается.

Значения параметров водяной системы отопления в соответствии с 4.3.1.:

❏ Прегулирование (2 K) терморегуляторами на приборах отопления ηctr = 0,93;

❏ температурный напор 60 K (при 90/70)ηstr1 = 0,93;

❏ отопительные приборы установлены у внешних стен с окнами без радиационной защиты ηstr2 = 0,83, ηemb = 1;

❏ применение периодического теплового режима fim = 0,98;

❏ влияние лучистого теплообмена (величина frad = 1,0);

❏ гидравлическая наладка системы автоматическими балансировочными клапанами для каждой квартиры (количество радиаторов в квартирах не превышает восьми) fhudr = 1,0.

4.4.3. Расчетный расход тепловой энергии за отопительный период ЕКС ОПД в соответствии с уравнениями (1) и (2):

Расчетный расход тепловой энергии за отопительный период водяной системой отопления в соответствии с уравнениями (1) и (2) без учета дополнительного расхода энергии на работу электрооборудования (насоса, электроники, электроприводов клапанов и пр.) а также без учета потерь энергии в источнике энергии и теплосетях:

4.4.4. Расчетный расход тепловой энергии за отопительный период ЕКС ОПД в сравнении с водяной системой центрального отопления меньше на:

что составляет:174,95 - 166,85 = 8,1 кВт.

  1. EN 1531621:2007. Heating systems in buildings. Method for calculation of system energy requirements and system efficiencies. Part 21.
  2. ДСТУ Б А.2.28:2010. Розділ «Енергоефективність» у складі проектної документації об’єктів.
  3. ДСТУН Б А.2.25:2007. Настанова з розроблення та складання енергетичного паспорта будівель.
  4. прДСТУН Б В.1.1ХХХ:201Х. Будівельна кліматологія. 5. ДБН В.2.631:2006. Теплова ізоляція будівель.
  5. EN ISO 13790:2008. Energy performance of buildings. Calculation of energy use for space heating and cooling.
  6. EN 14336:2004. Heating systems in buildings. Installation and commissioning of water based heating systems.
  7. прДБН В.2.524:201Х. Електрична кабельна система опалення.
>>> Также читайте по теме в журнале

РЕФЕРАТ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ПЕРЕЧЕНЬ ЛИСТОВ ГРАФИЧЕСКИХ ДОКУМЕНТОВ. . . . . . . . 6

ВВЕДЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. ОБЗОР СУЩЕСТВУЮЩИХ МЕТОДОВ СУШКИ И

ОХЛАЖДЕНИЯ ПРОДУКТОВ. . . . . . . . . . . . . . . . . . . . . 9

1.1 Основные методы сушки и охлаждения продуктов. . . . . . . . 9

1.2 Обоснование выбора охладителя. . . . . . . . . . . . . . . . . . 14

2. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОИЗВОДСТВА. . . . . . . . . . 16

3. ХАРАКТЕРИСТИКА ПРОИЗВОДИМОЙ ПРОДУКЦИИ. . . . . . 17

4. ХАРАКТЕРИСТИКА СЫРЬЯ, МАТЕРИАЛОВ,

ПОЛУПРОДУКТОВ И ЭНЕРГОРЕСУРСОВ. . . . . . . . . . . . . 21

5. ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА И СХЕМЫ. . 25

5.1 Стадии технологического процесса. . . . . . . . . . . . . . . . . 25

5.3 Прокалка бихромата аммония. . . . . . . . . . . . . . . . . . . . 27

5.4 Очистка отходящих от прокалочной печи газов. . . . . . . . . . 27

5.5 Загаска спека окиси хрома. . . . . . . . . . . . . . . . . . . . . . 29

5.6 Фильтрация пульпы и промывка осадка окиси хрома. . . . . . . 30

5.7 Сушка и охлаждение окиси хрома металлургической. . . . . . . 32

5.8 Очистка отходящих газов от сушилки. . . . . . . . . . . . . . . 33

5.9 Фасовка и упаковка готового продукта. . . . . . . . . . . . . . . 34

6. НОРМЫ РАСХОДА ОСНОВНЫХ ВИДОВ СЫРЬЯ,

МАТЕРИАЛОВ И ЭНЕРГОРЕСУРСОВ. . . . . . . . . . . . . . . 35

7. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ ХОЛОДИЛЬНО –

ТРАНСПОРТНОЙ ТРУБЫ. . . . . . . . . . . . . . . . . . . . . . . 38

7.1 Исходные данные. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Физические параметры теплоносителей. . . . . . . . . . . . . . 39

7.3 Расчет теплового баланса. . . . . . . . . . . . . . . . . . . . . . 39

7.4 Определение коэффициентов теплоотдачи и теплопередачи. . . 44

7.4.1 Определение коэффициента теплоотдачи от окиси хрома

к стенке. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.4.2 Определение коэффициента теплоотдачи от воды к стенке. . . . 45

7.4.3 Определение коэффициента теплопередачи. . . . . . . . . . . . 50

7.5 Определение поверхности теплообмена. . . . . . . . . . . . . . 51

7.6 Расчет материального баланса. . . . . . . . . . . . . . . . . . . . 52

7.7 Кинематический расчет привода. . . . . . . . . . . . . . . . . . 53

8. РАСЧЕТЫ НА ПРОЧНОСТЬ. . . . . . . . . . . . . . . . . . . . . . 56



8.1 Расчет на прочность бандажей. . . . . . . . . . . . . . . . . . . . 56

8.2 Расчет корпуса холодильно-транспортной трубы на прочность. 62

9. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА. . . . . . . . . 65

9.1 Введение в раздел. . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2 Характеристика основных опасностей производства

и условий труда. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.3 Обеспечение безопасности работы. . . . . . . . . . . . . . . . . . 67

9.3.1 Электробезопасность. . . . . . . . . . . . . . . . . . . . . . . . . 67

9.3.2 Пожарная безопасность. . . . . . . . . . . . . . . . . . . . . . . 70

9.3.3 Защита от шума и вибрации. . . . . . . . . . . . . . . . . . . . . 71

9.3.4 Промышленное освещение. . . . . . . . . . . . . . . . . . . . . . 73

9.3.5 Микроклимат в рабочей зоне. . . . . . . . . . . . . . . . . . . . . 74

9.4 Экологичность проекта. . . . . . . . . . . . . . . . . . . . . . . . 75

9.5 Возможность аварийных ситуаций. . . . . . . . . . . . . . . . . 82

9.6 Чрезвычайные обстоятельства. . . . . . . . . . . . . . . . . . . . 82

9.7 Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА. . . 87

10.1 Введение в раздел. . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.2 Расчет капитальных затрат. . . . . . . . . . . . . . . . . . . . . 87

10.3 Расчет ремонтных затрат на систему охлаждения окиси хрома. . 87

10.4 Расчет затрат на обслуживание охладителя. . . . . . . . . . . . . 96

10.5 Расчет себестоимости охлаждения окиси хрома. . . . . . . . . . 98

10.6 Расчет окупаемости. . . . . . . . . . . . . . . . . . . . . . . . . 101

10.7 Выводы по разделу. . . . . . . . . . . . . . . . . . . . . . . . . 103

11. ЭНЕРГОСБЕРЕЖЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . 104

ЗАКЛЮЧЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

БИБЛИОГРАФИЧЕСКИЙ СПИСОК. . . . . . . . . . . . . . . . . . 108


РЕФЕРАТ

Тема дипломного проекта: “Холодильно-транспортная труба для охлаждения продуктов после операций сушки и прокалки”.

Целью данного проекта является теоретическое обоснование возможного увеличения производительности по готовому продукту существующей холодильно-транспортной трубы.

На основании литературного обзора было принято решение о разработке охладителя на основе барабанного аппарата с водяным охлаждением.

Проведен расчет площади и коэффициента теплопередачи (F =14,16м 2 , К=213,5Вт/(м 2 К)) в аппарате, доказывающий его работоспособность при данных условиях работы. Производительность аппарата составляет 8000кг/час по охлажденному продукту.

В дипломном проекте выполнены технологические расчеты охладителя, прочностные расчеты, разработаны мероприятия по охране труда, рассмотрены вопросы безопасности и экологичности проекта, произведен расчет экономической эффективности проекта. Срок окупаемости охладителя составит менее одного года.

В данном проекте рассмотрен вариант работы аппарата на примере охлаждения окиси хрома, кроме того холодильно-транспортная труба может использоваться и для охлаждения других порошкообразных или гранулированных продуктов.

Пояснительная записка содержит:

Страниц……………………………109

Рисунков……………………..…..….19

Таблиц………………………………22

Библиографических ссылок……….24

ПЕРЕЧЕНЬ ЛИСТОВ ГРАФИЧЕСКИХ ДОКУМЕНТОВ.

№ п/п Наименование документа Обозначение документа Формат
Производство окиси хрома металлургической. Технологическая схема. 260601 065000 2766 ТЗ 2 Х А1
Холодильно-транспортная труба. Чертеж общего вида. 260601 065100 2766 ВО А1
Венец. Сборочный чертеж. 260601 065110 2766 СБ А1
Кожух. Сборочный чертеж. 260601 065120 2766 СБ А3
Труба. Сборочный чертеж. 260601 065130 2766 СБ А3
Кожух. Сборочный чертеж. 260601 065140 2766 СБ А3
Кожух. Сборочный чертеж. 260601 065150 2766 СБ А3
Кожух. Сборочный чертеж. 260601 065160 2766 СБ А3
Группа моторно-редукторная. Сборочный чертеж. 260601 065170 2766 СБ А1
Спираль. Сборочный чертеж. 260601 065180 2766 СБ А3
Станция опорная с упором. Сборочный чертеж. 260601 065190 2766 СБ А1
Крышка. Сборочный чертеж. 260601 065121 2766 СБ А3
Основание. Сборочный чертеж. 260601 065122 2766 СБ А3
Узел подачи воды. Сборочный чертеж. 260601 065123 2766 СБ А3
Полукольцо 260601 065121. 03 2766 А4
Полукольцо 260601 065124 2766 А4
Фланец 260601 065125 2766 А3

ВВЕДЕНИЕ

В данном дипломном проекте произведен расчет холодильно-транспортной трубы, предназначенной для охлаждения окиси хрома. В настоящее время на ЗАО «Русский хром-1915» в производстве окиси хрома металлургической применяется холодильно-транспортная труба производительностью 4 т/ч по готовому продукту. Мощностей завода достаточно, чтобы увеличить производительность в два раза. Поэтому целью дипломного проекта является теоретическое обоснование возможного увеличения производительности по готовому продукту существующей холодильно-транспортной трубы.

Важность производимого продукта на сегодняшний день очевидна. Это связано с тем, что техническая окись хрома предназначается для металлургической и лакокрасочной промышленности, производства строительных материалов, а также для полировальных процессов в часовой, приборостроительной, машиностроительной и других отраслей промышленности.

Техническая окись хрома - это основной продукт для производства металлургического хрома. Хром и его сплавы - это жаростойкие и коррозионностойкие стали и сплавы.


1. ОБЗОР СУЩЕСТВУЮЩИХ МЕТОДОВ СУШКИ И ОХЛАЖДЕНИЯ ПРОДУКТОВ

1.1 Основные методы сушки и охлаждения продуктов

В производстве твердых порошкообразных или гранулированных продуктов пищевой и химической промышленности основными технологическими операциями, обеспечивающими необходимые качественные характеристики конечного продукта, являются сушка исходных сырьевых смесей и последующее охлаждение продукта до температуры фасовки и хранения.

Одними из наиболее широко применяемых для этих целей агрегатов являются вращающиеся барабанные аппараты. Холодильники барабанного типа предназначены для охлаждения сыпучих взрывобезопасных материалов. В зависимости от способа охлаждения обрабатываемого материала в барабане аппараты классифицируются на холодильники с воздушным охлаждением и холодильники с водяным охлаждением. Холодильник представляет собой цилиндрический корпус, установленный на роликовых опорах (рисунок 1.1).

Рисунок 1.1 – Холодильник барабанного типа.

Вращение аппарата осуществляется от индивидуального привода. Холодильники могут изготавливаться диаметром от 0,5 до 4,5м и длиной от 2,5 до 70м. Производительность определяется геометрическими размерами, скоростью вращения, углом наклона барабана и температурными требованиями технологии обработки материала. Для перемещения материала холодильники изготавливаются с различными типами насадок в зависимости от обрабатываемого продукта.

К достоинствам этих охладителей относятся: простота конструкции, относительно легкое регулирование производительности аппарата, надежность в эксплуатации.

Большая металлоемкость и громоздкость являются недостатками барабанных аппаратов.

Для охлаждения гранулированных материалов часто применяют пластинчатые холодильники (рисунок 1.2).

Рисунок 1.2 – Пластинчатый холодильник.

Теплообменник состоит из трех вертикально расположенных секций (в зависимости от требуемой температуры охлаждения количество секций возможно изменять), загрузочного и разгрузочного бункера. Разгрузочный бункер снабжен двумя вибромоторами. Для контроля уровня загрузки и температуры предусмотрены уровнемер и термопары.

В секциях установлен ряд вертикальных пустотелых пластин изготовленных из нержавеющей стали. Пластины являются независимыми. В пластинах предусмотрен оптимальный поток воды с минимумом застойных зон. Гранулы удобрений массовым потоком медленно двигаются самотеком между пластинами. Предусмотрена продувка сухим воздухом, предотвращающая затор гранул. Охлаждающая вода проходит через пластины в целях эффективности - противотоком. Поток продукта регулируется шиберным питателем.

Аппарат отличается легкостью ремонта и обслуживания (навесная дверь, люк в накопительном бункере), простотой системы, легкостью монтажа.

Аппарат применяется для эффективного косвенного охлаждения прилированных и гранулированных удобрений (в частности аммиачной селитры) и характеризуется следующими достоинствами:

Компактность и большая поверхность теплообмена;

Конструкция не требует применения аспирационного оборудования;

Процесс движения гранул селитры между близко расположенными неровными пластинами в охладителе по своей сути близок к ламинарным псевдоожиженным слоям;

Нет соприкосновения охлаждающего агента и гранул селитры, процесс теплообмена осуществляется через стенку;

Существенно снижается истирание гранул;

Снижается загрязнение охлаждаемого продукта.

Благодаря указанным достоинствам становится возможным регулирование степени охлаждения за счет применения более охлажденной воды, исключение дополнительной перерекристаллизации, вызывающей снижение качества продукции, исключение увлажнения, снижение потерь.

Недостатком аппарата является то, что он требует исполнения специального профиля пластин, производство которых в России не налажено. Требуется закупка этих пластин за рубежом, что существенно удорожает стоимость аппарата. Холодильник используется в случаях выполнения специальных требований технологии производства продукта, например, для производства нитрата аммония.

Иногда для охлаждения гранулированных продуктов используют трубчатые теплообменные аппараты (рисунок 1.3).

Рисунок 1.3 – Трубчатый охладитель.

Для того, чтобы материал продвигался по трубкам, необходима установка вибропривода для их встряхивания. В межтрубное пространство можно подавать как воду, так и воздух в зависимости от технологических нужд.

Достоинства теплообменника: компактность при большой поверхности теплообмена; нет соприкосновения охлаждающего агента и гранул.

Недостаток: необходимо точное соблюдение технологии, чтобы не было налипания на стенках трубок.

Для сушки и охлаждения как гранулированных, так и порошкообразных материалов часто используют аппараты виброкипящего слоя. Применяют также и комбинированные аппараты (рисунок 1.4), в которых перенос тепла осуществляется в псевдоожиженном слое и через стенку встроенных теплообменных трубок, в которые подается охлаждающая вода.

Рисунок 1.4 – Холодильник комбинированного типа.

Достоинства: компактность при большой поверхности теплообмена.

Недостатком является большой пылеунос, а, следовательно, и необходимость установки системы очистки воздуха. Применение доступного, но малоинтенсивного воздушного охлаждения ограничивается требованиями к чистоте, температуре и сухости воздуха. Малая интенсивность охлаждения за счет обдува и естественной конвекции требуют значительное количество охлаждающего воздуха. Использование установок подготовки и очистки отработанного воздуха требует высоких затрат.

Для охлаждения материала, получаемой обжигом во вращающихся печах, широко используют компактные охладители шахтного типа (рисунок 1.5).

В них через слой зернистого продукта, перемещающегося сверху вниз между вертикально расположенными параллельными колосниковыми решетками, продувается воздух. Истирание материала в охладителях такого типа незначительное .

Главным достоинством этого теплообменника является его компактность.

Рис. 1.5 – Шахтный холодильник: 1 – шахта; 2,3 – колосниковые решетки; 4 – рассекатель; 5- приемная воронка; 6 – патрубки для ввода воздуха; 7 – качающийся питатель; 8 – конвейер.

Недостатком холодильников такого типа является деформация металлического каркаса и колосников решетки, перегородок и других узлов, под влиянием высокой температуры, что приводит к попаданию продукта в центральный воздушный канал и нарушению нормального режима работы. Для надежной работы охладителей данного типа необходимо: изготовление колосников и конструкции рамы, особенно в горячей зоне, из жаропрочного металла.

Обоснование выбора охладителя

Для охлаждения окиси хрома металлургической наиболее целесообразно использование барабанного аппарата с водяным охлаждением. Это связано с тем, что водяное охлаждение является наиболее эффективным и возможно регулирование степени охлаждения продукта за счет изменения температуры подаваемой для охлаждения воды. Отсутствие пылеуноса оказывает большой экологический и экономический эффект, так как окись хрома является потенциально опасным химическим и биологическим веществом, и степень очистки воздуха после охлаждения должна быть очень высокой. Это значит необходима серьезная система очистки воздуха, что ведет за собой дополнительные капитальные вложения.

Кроме того, барабанный аппарат является простым в обслуживании и надежным в работе.

В данном дипломном проекте произведена конструкторская разработка холодильно-транспортной трубы производительностью 8000 кг/час по готовому продукту.

Цель работы - увеличение производительности охлаждения окиси хрома.

Выбор системы охлаждения имеет большое значение. От неё зависит сохранность и усушка груза, расход энергии на еденицу перевозимой продукции, безопасность перевозки, эффективность использования грузового объема и т. д.

Рассмотрим основные требования, которым должна удовлетворять судовая система охлаждения трюмов:

Обеспечивать равномерное (однородное) температурное поле в любой точке трюма с минимальными отклонениями от оптимальных значений для дан­ного груза;

Обладать большой аккумулирующей способностью (инерционностью) с целью замедления повышения температуры в трюме при временной остановке холодильной машины;

Обеспечивать возможно меньший температурный перепад между темпе­ратурой груза и температурой кипения холодильного агента. Это позволит полу­чить при заданной температуре камеры максимальное значение холодильного ко­эффициента машины и наименьшие энергозатраты на перевозку грузов.

Охлаждающие приборы и системы канализации холодоносителя должны иметь малую массу и габариты. Необходимо знать, что малые габариты охлаж­дающих поверхностей могут быть достигнуты только за счет повышения значе­ний коэффициентов теплопередачи.

Обеспечивать надежность, простоту и удобство в эксплуатации, безопас­ность для людей и фузов, нормальное наблюдение за режимом охлаждения, лег­кость его регулирования, ревизии, ремонта и т.д.

Для провизионных камер сухогрузного судна экономически выгоднее использовать воздушную систему охлаждения с непосредственным испарениям хладагента в испарительных батареях. Так как системы с промежуточным хладоносителем имеют более низкую экономичность по сравнению с системой непосредственного охлаждения: теплопередача осуществляется дважды - от воздуха к рассолу и от рассола к хладагенту. Поэтому при прочих равных условиях общий перепад температуры между грузом и испаряющимся холодильным агентом возрастает и составляет 11 ...12°С, что ухудшает экономические показатели работы компрес­сора и повышает его размеры. Кроме того, возрастают расходы на привод рас­сольных насосов.

Системы с промежуточным хладоносителем также имеют низкую холодо-отдчу холодоносителя, что предопределяет большие массогабаритные показатели рассольных систем.

Воздушная система охлаждения получила широкое распространение на транспортных и производственных рефрижераторах, в особенности при использовании фреоновых холодильных машин. Особенно предпочтительна эта система для рефрижераторов, перевозящих дышащие грузы (фрукты, овощи).

Воздушная система охлаждения, обслуживаемая холодильными машинами на фреоне-R-22, наилучшим образом обеспечивает повышение технико-экономических показателей производст­венных и транспортных рефрижераторов.

Циркуляция охлажденного воздуха в камерах обеспечивается вентиляторами, прогоняющими воздух через воздухоохладители непосредственного охлаждения.

Значительно меньшие масса и габариты приборов охлаждения существенно увеличивают полезный объем камер.

Система воздушного охлаждения по сравнению с системой батарейного («тихого») охлаждения имеет ряд преимуществ и недостатков, взаимное влияние которых учитывается при технико-экономическом анализе сравниваемых систем. Преимушества воздушной системы: значительно меньшая металлоемкость, большая долговечность, более удобная эксплуатация, повышенная грузовмести-мость при прочих равных условиях. Все эти факторы уменьшают амортизацион-ные отчисления, эксплуатационные расходы и улучшают провозную способность судна. При наличии воздушной системы периодически проводящиеся оттайки воздухоохладителей позволяют более эффективно использовать производитель-ность холодильной машины в то время как при «тихом» охлаждении слой инея, нарастающий за весь период рейса, существенно ухудшает эффективность охлаждающих батарей и приводит к снижению холодильного коэффициента мапгины с соответствующим увеличением энергозатрат. К недостаткам воздушной системы относятся: повышенная холодопроизводительность установ-ки, связанная с необходимостью компенсации дополнительных теплопритоков эквивалентных мощности вентиляторов и несколько большая усушка продукта связанная с более интенсивным тепло- и массообменом.

Технико-экономические анализы воздушных систем охлаждения показывают преимущества этих систем перед система батарейного охлаждения, в связи с чем воздушная система охлаждения считается наиболее прогрессивной и перспективной.

Рис.2. Принципиальная схема воздушной системы охлаждения с непосредственным испарением судовых рефрижераторных помещений.

4. Выбор изоляционных материалов. Расчет изоляционной конструкции.

Основным потребителем холода в рефрижераторных перевозках является тепло, проникающее в охлаждаемые помещения извне через ограждающие их конструкции. Уменьшение внешних теплопритоков способствует уменьшению холодопотребности судна. Это возможно обеспечить путем осуществления теп­ловой изоляции ограждающих поверхностей. Чем ниже теплопроводность изо­ляционного материала и больше его толщина, тем меньше тепла проникает в помещение. Однако с увеличением толщины изоляции уменьшается полезный грузовой объем изолируемых помещений, возрастают стоимость изоляционно­го материала и его монтаж. На современных рефрижераторных судах изоляци­онные конструкции уменьшают объем трюма на 15...30%, что отрицательно вли-ивт на рентабельность перевозок. Поэтому для теплоизоляции применяют материалы, имеющие низкое значение коэффициента теплопроводности.

К изоляционным материалам, применяемым в судостроении, предъяв­ляется ряд других важных требований, обусловливающих их высокую эффективность:

Высокие теплозащитные свойства (низкий коэффициент теплопроводности λ [Вт/(м·К)];

Малая плотность ρ, кг/м 3 ;

Высокая механическая прочность и эластичность, противостоящие вибрации и деформации корпуса судна;

Морозостойкость (способность противостоять разрушению изоляции при переменных температурных нагрузках);

Огнестойкость и негорючесть;

Отсутствие запахов и невосприимчивость к ним;

Малая влагоемкость и малая гигроскопичность;

Минимальная усадка насыпного изоляционного материала;

Не вызывать и не способствовать коррозии поверхностей;

Не влиять на здоровье людей;

Достаточная стойкость к гнилостным бактериям и грибкам;

Дешевизна, доступность, удобство при транспортировке, монтаже и эксплу-атации, долговечность.

Существующие изоляционные материалы не могут в достаточной степени удовлетворять одновременно всем перечисленным выше требованиям. Поэтому при их выборе ориентируются на выполнение только основных требовании м зависимости от назначения судна, района плавания и др. Кроме того, влиянии ряда недостатков может быть устранено либо значительно снижено созданном рациональной изоляционной конструкции, которая обеспечивает:

Предохранение изоляционной конструкции от увлажнения путем установки паровлагозащитного покрытия и (или) устройства осушающих слоев дня осушения изоляции в период эксплуатации;

Защиту изоляции от проникновения грызунов путем установки специаш, ных металлических сеток;

Непрерывность изоляционного слоя и его толщины, способствующих эффективности теплозащитных свойств ограждений в длительный эксплуатацион-ный период.

Хорошими изоляционными свойствами обладают материалы, состоящие из мелких и закрытых пор. В современных изоляционных материалах число закрытых пор, содержащихся в 1 см 3 материала, достигает нескольких тысяч. Такие материалы не требуют дополнительных мероприятий по пароизоляции и не нуждаются в осушении.

Наиболее современными представителями высокоэффективных теплоизо­ляционных материалов являются пенопласты. В последнее время получено много различных пенопластов, обладающих высокой стойкостью к увлажнению, высокой прочностью и низкими значениями плотности и коэффициента тепло­проводности.

Поэтому в качестве теплоизо­ляционого материала провизионных камер будем использовать плиты из полихлорвиниловой смолы с неорганическим газо-образователем ПХВ-1 представляют собой пористый материал, ячейки которого заполнены воздухом и изолированы друг от друга тонкими стенками. ПХВ-1 не загнивает, тлеет в пламени, не вызывает коррозии. Плиты при нагревании позволяют создавать фасонные дета­ли применительно к набору судна.

Теплофизические характеристики изоляционного материала:

Плотность – ρ = 90...130 кг/м 3

λ и з = 0,058 Вт/(м·К)

Изоляционные конструкции охлаждаемых помещений судов подразделяют на три основных типа: не прорезаемые стальным набором корпуса; перекрываю-щие набор, или нормальные и обходящие набор.

Х
олодильные камеры располагаются вблизи камбуза, следовательно применем изоляционную конструкцию первого типа для изолирования гладких металлических поверхностей. Такие конструкции не прорезают стальной набор корпуса судна, поэтому их выполняют из материалов с коэффициентами тепло-проводности, отличающимися не более чем в десять раз. Конструкции такого рода применяют для изолирования второго дна, палуб, переборок и гладких сторон охлаждаемых помещений (рис.3.)

Рис.3. Изоляционная конструкция переборок.

1 – металлическая обшивка; 2 – подкрепляющие деревянные бруски;

3 – изоляционный материал; 4 – деревянная зашивка изоляции.

Простые конструкции изоляции гладких переборок, палубы, выполненные из материалов с мало отличающимися коэффициентами теплопроводности, рассчи-таны по законам параллельным тепловому потоку.

Расчет изоляционной конструкции по методу параллельных тепловых потоков:

Основные размеры конструкции:

S = 800 мм

С = 60 мм

δ д = 60 мм

δ из =150 мм

Деревянная зашивка и бруски – сосна вдоль волокон:

Плотность – ρ= 500 кг/м 3

Коэффициент теплопроводности – λ д = 0,4 Вт/(м·К)

Теплоемкость – с= 2,3 кДж/(кг·К)

/(0,15+0,06)= 1,90Вт/(м·К)

1/((0,15/0,058)+(0,06/)=0,37 Вт/(м·К)

((1,90·0,06)+ 0,37(0,8-0,06))/0,8=0,48 Вт/(м·К)

Расчет изоляционной конструкции методом круговых потоков:

Размеры шпации:

b=70 мм Рис.4. Нормальная изоляционная конструкция

с продольным расположением брусков

тепловой поток идет по линии наименьшего сопротивления т.е. наибольшая длинна дуги четверти круга равна высоте профиля набора:

(2·170)/π=0,108 м

Шпация разбивается на 6 зон, ширина которых равна:

II. 2h/π= 0,108 м

III. S-b-4h/π=(800-70-4·170/π)/1000=0,514 м

IV. H-e-a-h(1-2/π)=(300-150-60-170(1-2/π))/1000=0,028 м

V. h+e+a-H-c=(170+150+60-300-60)/1000=0,020 м

Расчитываем тепловой поток каждой зоны:

m э =λ из /λ д =0,058/0,4=0,145 - толщина эквивалентная слою дерева толщиной 1м;

I
зона:

0,690 рад

Коэффициент теплопроводности всей конструкции:

(0,0516+0,0425+0,1198+0,0072+0,00914+0,1311)/0,8=

Загрузка...